64-17577

G/ Zf;THBEE—PARTICLE SCATTERING. 1I1. 1IN SPACE*

JR. C. Whitten FE/163x 2 "% MQ,/
253+ Jscns

Stanford Research Institute, Menlo Park, California
[ Am—

J
(NASA d@wﬁ-ﬁp’?jj

A

The theory of three-particle collisions in a plane which was developed

Abstract

in an earlier paper is extended to scattering in space. Formal expressions
for scattering amplitudes and cross sections are obtained for inelastic and
rearrangement collisions as well as for elastic scattering. The optical
theorem is also extended to the three-body case. The paper concludes with

a discussion of the dynamics of a collision among three structureless par-

ticles which interact via a short-range potential. /ZAXDLAN/
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FIGURE CAPTION

Figure 1. Three-body scattering diagrams. (a) Diagram corresponding
to the first-order term in the Born series which contains the interac-
tion V,,. This pseudo three-body process is represented by the amplitude
given in Eq. (37). (b) and (c) Diagrams corresponding to the second
order term in the Born series which contain V,, V,3 and V,5 V;,, res-
pectively. (d) Pseudo three-body diagram corresponding to the second

order term in the Born series which contains Vy, V;,.




I INTRODUCTION

In an earlier paper1 we discussed the scattering of three particles
constrained to motion in a plane with the aid of the integral equation of

Lippmann and Schwinger? 3 ¢

In the present paper we shall extend this
formalism to motion in space, and utilize the results in a simple appli-
cation.

We found in Paper I that the generalized angular momentum was espe-
cially appropriate for treating three-particle collisions in a plane by

means of the representations®

which employ, in addition to the energy K,
the dynamical variables

(a) A2, L, and Z,
(B) /\2, L, and Y

(¢) A2, L, and L,

where /\2, L, Zt, Y, L,, and L, are defined in Eqs. (1) and (5) of Paper
I. Although no spatial analogue of (A) has yet been developed, the planar

representations (B) and (C) are analogous, respectively, to the following:
B') Az, L, L,, L,, and L
(c') A2, i, L,, L, , and L,

where the Lz are the z-components of ordinary angular momentum., It is
evident that in the spatial case we have six degrees of freedom (excluding
internal structure of the colliding particles), one of which is again taken
as the energy. In Paper I it was demonstrated that (B) and (C) differed

only by a (trivial) phase. As one may: suspect, the relationship between




(B') and (C') is more complicated; in fact, they are connected by a

unitary transformation whose elements are Clebsch-Gordon coefficients®

£42,L
Cm:sz = < £1£2m1m2 IL21£2M>
I}\L£122M> = 2 llllﬂzmlmzleﬂzm1m2|L31£2M> (1)
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In Paper 1 we briefly discussed the physical significance ofjﬁz and
the relationship of the generalized angular momentum variables to the
criterion for a three-body collision in a plane. It was concluded that
in the quantum regime the particles approach more closely as A, the
quantum number corresponding toj\z, decreases, For a given value of A,
the system most closely approaches a simultaneous collision of the three
particles at vanishing o (the eigenvalue of Zt) in the symmetric repre-
sentation or at A = m+ in the asymmetric one. In the representation
(C') the criterion for closest approach becomes A = £; + £,. It is
intuitively obvious that larger values of A will contribute to the three-
body interactions when two-body lifetimes are long. The relationship
can in fact be demonstrated, and Smith? has recently done this,

In most cases of interest, members of assemblies of particles inter-
act with each qgqther via two-body central forces, i.e., the direction of
the forces is parallel to the line connecting the centers of the particles.
If a third particle interacts with such a pair, a torque is exerted on
the pair thereby changing its angular momentum. Hence A £Z,Z,m;ym, are
not ''good quantum numbers' with respect to the interaction, and the
computations of scattering amplitudes, phase shifts, etc., become extremely

difficult to carry out. Some improvement is gained by the adoption of



representation (B') since L2 and LZ are rigorously conserved because of
the absence of external forces., Actually it is easier to make the cal-
culations using representation (C') and then transform to (B') with the
aid of transformation (1). The coordinate system best suited to these

representations is a hyperspherical one

P cos y sin @5 cos ¢1
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Y
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£ =p cos y sin @; sin ¢,
el =p cos yx cos g,
(2)

2 = p sin y sin 6, cos ¢,

tE2 = p sin x sin ©, sin ¢,

|
pe)
[¢]
Q
4]
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in which we have used a spatial partitioning similar to that shown in
Fig. 2 of Paper 1.

In two-particle scattering the two variables which are required to
describe the kinematics of the elastic collision process are usually
taken as the energy and the momentum transfer. 1In a three-body collision
four variables are required to take account of the collision of the third
particle with the 1-2 pair; generalizing to n-body collisions, we require
2(n~1) kinematic variables. In order to invéstigate the possible choices
let us square the magnitude of the generalized momentum transfer using

the coordinate system (2)

IALP :lﬂf - ]2z _ Ivolz + |W1I2 - zwoizf
- - - (3)
VRN VLRI

where

|8 | = 2k sin } (6,° - ol)(cos x° cos Xl)%




2k sin 4 (09 - eg)(sin %% sin xi)é (4)

|22 =
A
|A|=2k sin % (x°-xi)
~X
and [nﬂ |= Iﬂi‘ = k is the magnitude of the generalized momentum. The

three quantities 4A;, Az, and A& have the following physical significance:
A, is the momentum transfer between particles 1 and 2, A, is the momen-
tum transfer between particle 3 and the 1-2 pair, and Ak describes the
change in "'togetherness" (or "togetherness transfer') of the three par-
ticles brought about by the collision., The magnitudes of these three

2
quantities, together with the energy E = §—, constitute a complete set

24
of independent kinematic variables,
The Schrodinger equation describing the motion of the three parti-
cles can be written in terms of the variables t! and £2 or alternatively

in terms of the coordinates (P, X, ©;, 62, @3, ¥,). The former set

yields plane wave solutions
1 imeg
< >= e M~ 5
Tls> = Gy (3)
in which we have chosen our units such that { = 1 and the normalization

is one particle per unit volume. In the absence of a potential the lat-

ter yield the solutions

J. (kp)
A+2°
< kA 2132m1m2|px 910, ¢1¢z > = ——%Eajf_ A21£2m1m2(xelez¢;¢;) (6)

where JA+2(kp) is the Bessel function of the first kind of order A+2,

k is the magnitude of the momentum (k? = 2uK), and

2 2 _
j\ Alyhomymy ~ x(k+4lzaﬁ1zzm1m2 (7a)



2 =
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where the ,F,(a,b; c; z) are Jacobi polynomials and the YZm(efﬁ) are
spherical harmonics.

In the following section we shall obtain the free-particle Green's
function and equations for the scattering amplitude and cross section.
Succeeding sections will deal with a three-body formulation of the optical
theorem and with a simple application of the theory. Discussion of the
analytic properties of the three-particle scattering amplitude will be

reserved for a future paper.

II COLLISION DYNAMICS

As in Paper I, we write the equation for the state vector |s> of

the system in integral form2?:3,%

|s> = ]i>+G(+)(Eo) v | (9)



where |i> is the state vector at t = - », V is the interaction potential,

and G(+)(Eo) is a free-particle propagator

¢(gy) = 1™ [gg - K + 1) (10)

In Eq. (10) K is the free-particle Hamiltonian operator and ¢ is the
usual adiabatic switching parameter. In configuration space representa-

tion we thus have

s
where
(+) _lim  2p oim-(E-t") o
GE (e,8'") ~ e +0 (27)° / k:’_ K% + 2ipe ar ; k"'l[ |(12)

with the aid of some standard mathematical techniques® Eq. (12) can be

cast in the form

) © /2 (k| g*-¢'* |cos x)J (klg2 '2|51n x)
Gé+)(§’§') = o = / i’ T g7 5.2 vE
s ef>+o (2r)® o o &~ ||§ -E
g_ 3 k4

x sin “x cos dydk

"X k2 - k% + 2ipe

_ lim 2u Jo(klE-£"]) 3
= e 4o (217 lag'lzf i e Kk (13)

- k® + 2iue

The integration indicated in Eq. (13) is carried out over contours around

the first and fourth quadrants (see Paper 1), yielding

(+)p gry o 0 ) 2 g (V) pieer
=(;1T)2L—_—S—r m () je-g 1) (14)




which takes the asymptotic form
ka/z -$ri

(+)
GE+ ( z_—737§'lg—g__§7f e

S

Jik[E-E"]. (15)

One can also express the Green's function in terms of the hyperspherical

wave functions (6) in which case we obtain

m >(kp)J)\+2<kp )

o{(e.g?) - muZoC (O x(E) e o7 , o >p' (16)

where @ denotes the set of quantum numbers Af;Z,m,m,.
Inelastic scattering is possible if one or more of the particles
has internal structure. If all three are of this type, the free-particle

wave functions can be written

¢

i

= )T RalP)S ()T (1) exp [a(rd - g7 + 72 - £7)]  (7)

where Rn(p), Sn(c), and TD(T) represent the internal wave functions of

the particles. The Green's function (12) of the interaction then takes

the form
(+)p pvy _ lim expli g, - (e-¢)]
GE (E.’E\) = e-l-> +0 Z / E- E -E)\—E -E +1e
x B (0)S, ()T, (1)R*(6")s *(a" )T, *(+") g (18)

When the integration is performed as in Paper I, we obtain

(1)
ipk (k. |E-E"])
Gé”(gpm; E'ptotr') = Z uv)x 'uz)\ 27 2
~ - HVA |£ £’

x R (p)S, ()T, (1)R *(p')s¥(c" )T *(7") (19)



in which we have made the replacement

(-1——)k2 =E -E

- - E - 2
2u7 VA N v (20)

Expressed in terms of the generalized angular momentum eigenfunctions

(representation C') Eq. (19) becomes

GI(;+)(£OUT; E\'D'O"T') = ip Z Z é(g% (é\')

VA O

(1) .
Hyvo (KaP)dy (ko)
pzp:Z

R (0)S (0)T,(r)R *(p")S) (a")T}(r")  (21)

This form can easily be recast in representation (B') with the aid of
the unitary transformation (1).

With the aid of an elementary extension of the methods employed in
Appendix A of Paper I we can readily obtain the N-body Green's functions
for elastic scattering. As one may suspect the results for odd-N and

even~N are different:

(+) g ¢vy . mui o103 N ) ettt 1) (o
A G BT SR o THERD (e
2,”. 3/2 - bl d
(+),, .. " Ly Nes H;“’(kl_g-ggl)]
113
(22)

Although Eq. (22) will not be used again in this paper, it is an inter-
esting generalization of the methods employed here.
The asymptotic form of the wave function (11) can be expressed in

terms of a scattering amplitude f(%i,%o):



3/2 i .
p (8) = Oy () + e 2@ R) (23)

[ & w1

which is related to the cross section, where

. A A,
£ (o, T?i) = @Flfw-rf e 1KPEE V(,i') in(,%.')d.%:,’ (24)

and ?o and ?} represent the directions of the incoming and scattered
three~particle momenta, respectively. As we saw in Paper I, it is fre-
quently more useful to expand the scattering amplitude in a series of
generalized angular momentum eigenfunctions:

A4y fzmimy
£(To,T,) = E: Lo zzm,mz(”°) fy8,2,mym, Loss zzm,m'(” ) (25)
Al homymy

A'8]23ming

where
Mitiming o n b D) x+z ) L ® v ey (£)ag_(26)
My lamymy, ~ VT KZ Mylomym, 7 A'LifLimimg 7

In the earlier work the relationship of the scattering amplitude to
the three-body differential cross section UQgi,ﬂp) was developed in two
different ways. The first proceeded from the ratio between the magnitude
of the scattered flux and the incoming current density, whereas the
second approach was via time~dependent perturbation theory which gives

the cross section in terms of a transition matrix element R_n_o Wi
*
L oarl

(P

cr(1r0,1r ) = —-D(E)|R7T T 12; (27)

wlli

Vo is the velocity of the incoming particles given by vo=k/u, p(E) is

the number of final states per unit energy, and?*




R = Hm e e<ad T > (28)
:Lro)xi €c->+0 e ml

Both schemes, of course, yield the same result,

A
U(Wo,w- ) = k3 lf('n'o n/TF- ) |2 (29)
e Ayl 1
for elastic collisions, and

k4
e} (Tro )T, ) = =0 lf(Tro ,’TI' l (30)
w~A ol ki

for inelastic collisions, The total cross section is obtained by inte-

grating o (m,, T, ) over the hypersolid angle ( where
e el

AN —
e = S

in? y cos? y dy sin 8,48, sin92d92d¢1d¢2 . (31)

Substitution of the expansion (25) for f(%o,%i) into Eq. (29) yields

= k° Z | (32)

where (¢ represents the quantum numbers Af,Z,m,m,. Thus the cross sec-

tion for scattering from the set (AL f,mym,) to the set (Mimimj) is

crk(oc -a') = kslfg’|2 (33)

Physically, the cross section g has the significance of a two-body
collision cross section of, for example, particles 1 and 2 multiplied
by the volume within which the third particle must lie in order that
two-particle interactions occur simultaneously.

In the same way as in Paper I we can introduce a three-particle
scattering matrix %xx, which connects the exit and entrance channels,
specified, for example, by the sets of quantum numbers @, &'. The

cross section aka —»a') is related to %XI' by

10



1y _ _zir_5 - 2 .,
o @ —=a') = 3|e,, -5, (34)

Comparison of Eqs. (33) and (34) immediately leads to the following

relationship between the scattering matrix and the scattering amplitude

Kk al
S’ = Syt T BT Ty (35)

In order to gain further insight into the physics of the collision
process it is convenient to expand the state vector given by Eq. (9) in

a Born series

|s> = |i> + av|i> + Gvav|i> + .... (36)

If V(¢) is written as the sum of three two-particle potentials and the
result inserted in Eq. (36), we see immediately that s> contains con-
tributions from two-particle (pseudo three-particle) as well as from
three-particle collisions. The two-body contributions arise from the
second term in the Born series and also from higher order terms like

GV, ,GVy,|i>. One can, in fact, construct scattering diagrams corres-

ponding to each such term in the series and this is illustrated in Fig. 1.

As an example of the two-body contributions, it is instructive to evalu-
ate the scattering amplitude in first Born approximation due to the

potential V;, acting between particles 1 and 2, From Eq. (24) we obtain

£(1°, ) = ey 8(r3 - 8) fvm(“g«i)ei(lﬂi 'Ei)ﬁldg (37)

which is a divergent as a result of the delta function. Integration
over Wi yields a finite result which is merely the uninteresting two-
~

body scattering amplitude of particles 1 and 2, Hence, the second term

11




in the series will not contribute to the three-body scattering amplitude
when the interactions are of the two-body type. 1f, however, the wave
function appearing under the integral of Eq. (11) is represented by an
appropriately distorted wave, the term corresponding to GVli> does in
fact yield three-body contributions; for example, V23£5) contributes
to the term containing v12££) by distorting the approximate wave function
used in the integral expression for the scattering amplitude. The exclu-
sion of two-body contributions was not discussed in Paper I.

Of great interest in any discussion of three-body scattering are

rearrangement collisions??,11,12

which are subject to the usual difficul-
ties inherent in the quantum mechanical trcatment of processes of this
type: nonorthogonality of the initial and final states and inapplica-
bility of perturbation theory in cases where the interaction can not be
treated as small.'? If computations could be carried out exactly, the
first difficulty would not arise; it is introduced by the necessity for
making approximations in order to render the mathematics tractable.
Niittleman12 has developed a formal approach which avoids this ambiguity
by reformulating the transition amplitude so that it contains transitions
only between mutually orthogonal states.
As an example of a three-body rearrangement collision it is instruc-~
tive to investigate the case of two-particle combination
A +B+C A + BC (38)
In Paper I we showed that we could employ the so-called "prior interaction"
(i.e., that in which the three interacting particles are unbound)
vV, = VO (39)

i A,B,C

12



to obtain the scattering amplitude in a form similar to that resulting
from use of the "'post interaction" (i.e., that in which two of the par-

ticles are bound)

Ve = Va,BC (40)

where
= 1
Hi + vi Hf + Vf (41)

and Hi’ Hf are the non-interacting Hamiltonians,

This was approached by introducing a complex yx

into the equation for the Green's function, Eq. {(i8). The same method

can be readily applied to three-particle scattering in space, yielding
e Al
v (8)= 2 ,d (81) £(Tg . Tp,) (42)
wl n

where ¢;(§1) is the internal wave function of the 'molecule' BC with

internal coordinates E! and binding energy
wAaA

n 1 2 .2
Ege =~ 2 k? sin H a (43)
kn is the relative momentum of A and BC
_ in _ = 1 /2
k= 2u(E" - By )Y/ (44)

and f(?gn, %;n) is the two-body scattering amplitude written in the

"prior-interaction'” form

i -ir, . Ea
ey, Tan) = 5= e TN T8, o (8 (o (45)

13



which is formally similar to the "post-interaction' amplitude

i L]
T2

; - £
£(70,77) = 5; J© “NA,BCQS)YE?QE)QE‘ (46)

In practical problems such as three-body recombination of atoms or three-
body electron attachment form (46) is expected to be more tractable than
(45). We are of course still faced with the second difficulty mentioned
above, i.e., the interaction potential can not be justifiably treated as
small.

Variational methods such as those of Hulthéh and Kohn and of

3

Schwinger!?® can easily be adapted to the three-body problem. Schwinger's

4

approach which was discussed briefly in Paper I proceeds via an integral

expression for the scattering amplitude

ey Lwre) uie) eBardgr)lfem o R u(g )y (g))ag ] (47)
7To',7ri— ‘J’*,E. U{Ewéd& -‘1;(,5 U(,&_G JE') U(e” ﬂl(g'dé'dé:

A~ — T AA A

in which U(E) = 2“V(,)' When f is varied with respect to y*, Eq. (24)
results., In order to apply this technique one can, for example, expand
¥ as a linear combination of a suitable set of functions and vary the
scattering amplitude with regard to the expansion coefficients. If a
Judicious choice of expansion functions has been made, the computed
value of f should be close to the true one. By contrast Hulthén's
variational principle??® involves the use of differential rather than
integral forms to construct a functional which is varied subject to the
appropriate boundary conditions. Actually the functionals proposed by
Schwinger and Hul thén apparently do not always satisfy the appropriate

boundary condition (outgoing scattered waves) for approximate wave

14



functions. Malik?%,!5 has shown how the functional can be modified in

such a way that this difficulty is avoided.

II1 OPTICAL THEOREM

In two-particle scattering one can obtain a relation between the

total cross section and the scattering amplitude corresponding to the

forward direction. This is a consequence of the conservation of particles,

or equivalently, of the unitarity of the scattering operator, STS = 1.
The extension to the three-particle case is simple. We begin by writing

S as the sum of the unit operator and a transition operator T

S=1+T (48)
Then we obviously have
T* T = —(T + T*) = -2ReT (49)
or in matrix representation
-2Re <f|T|i> = :§Z|< f|T|i>|2 ] (50)
m

The transition matrix elements are related to the scattering amplitude
£ (3", Al) by the equality

£ (/\m /\1

- i - .
= z§;3g7§-6(Em Ei) <fiTli>. (51)
Substitution of Eq. (51) into (50) yields

A
Af 1) =kt f*(Am Af) f(/\m %1) d%m

2(2r)5/2 1 £(7 (52)

which is the desired statement of the optical theorem. Since the three-

body cross section o is related to the scattering amplitude by

o=k [ |f("f AMyjz g 7, (53)

15




we can write the following relationship between the cross section and

' . . i i
the "forward" scattering amplitude £(7°, T )

2(27)5/2

L mtF, ) =0 (54)

which is the same expression one obtains for two-body scattering to

within a factor of (Zv)s/z.

IV APPLICATION

To illustrate the methods developed in Section II for the computa-
tion of the three-particle scattering cross section, we shall treat
briefly the case of interaction via short range two-body central poten-
tials which for simplicity will be chosen to be of the well-type
i

V(rij)

Vo if]xj -x|< a

N

(55)

0itfxd - x'|> a .

Although particles will be assumed to be identical, the antisymmetriza-
tion requirement on the wave function will be omitted, again for the
sake of simplicity. Expressing Eq. (55) in the coordinate system speci-

fied by Eq. (2) of Paper I

XZ_XJ.:dgl
1 d
X3 _ xl = E§2 + -ﬁl (56)
1 d
-l - gy
and Eq. (2) of this paper, we obtain
. a
V(r,,) = Vo if p cos x < 3

(57)

i}

0 if p cos x > %
16




1/2
V(rgs) = Vg if p[(g-cos )% + % sin x)? - sin x cos x cos w] < a
4 1 1/2
=0 if p[(g cos %)% + (a-sin x)% - sin x cos y cos w] > a
V(r d 2, (L e . 1/2
13) = v, if p[(§ cos x)? + (3-31n x)? .+ sin y cos x cos w] < a
d 1 1/2
= if p[(% cos + (% sin + sin x cos ¥ cos a
0 11 pl(3 cos 1% + (X sin 1) + sin x cos x cos w]'>

where cos ® =
If we now insert the potential specified by Eq. (57) into the three-
1" . % A Y
body Schrodinger equation, multiply byji& (¢), and integrate over the

hypersolid angle (3, we obtain a series of coupled radial equations

dR_ .
1 d o A(A+4
55 apte’ do )+ (6 - —c(a’——))Roa" - 2m) Vo' Byrgt = O (58)
ol

in which

<

SRORRAIFMOF MOERYFMOEMOTEE ILANCEMOEINC

are the transformed potentials; A, B, and C refer to the constraints
specified in Eq. (57). Clearly the potential matrix whose elements are
V' 1S mot diagonal because of the "non-central' character of the
constraints (57).

The asymptotic solution to the radial equation (58) in the absence
of interaction is

2 1 _ 22+3
Rt ~VEr Tip)o7% sin (ko - == w8, (60)

Since the potential falls off faster than p—2, the effect of the inter-

action is to introduce a (non-diagonal) phase shift 7__,. The complete

17




asymptotic wave function with interaction is thus

A 2243
w.(§)~(3)‘/2z (1)" sin (k0 =— 7 + 1__,) .
©= T oo'a” (ks)S/z X a .au@(%l)yén(/ﬁ\) (61)

Substitution into Eq. (23) of the form of Y i given by Eq. (61), together
Tk

with the expansion of the plane wave e%w:»-in eigenfunctions of the

three-body SchrSdinger equation without interaction,

im. E WA J (kp) * A A
e~"2 = (2)3 (1) "2 +2 () (¢) , (62)
o W AT T o

enables us to evaluate the scattering amplitude in terms of the phase
shifts n__,. We then compare the incident wave terms which appear on
the right and left hand sides of the equation in order to obtain the

following relationship (in matrix notation) of A, to n__,
o 0.0/
A= (27)% ' (63)
Clearly the phase shifts Ty ¢ 2T€ related to the scattering amplitude by

£ = i%g%iii (1M - 1) (64)

and to the scattering matrix S by
2iq

S=ce (65)

The scattering amplitudes and thus the phase shifts can be evaluated
from the interaction potential by means of suitable approximations, e.g.,
the second Born approximation, This approach yields the following
expression for the scattering amplitude

w2 wo_ i3,
IQ'I;J o' p'>pn

18




t t t " Jk " 7" "3 "
x Hy, ,(ko')p'dp fJX.+2(kD ) va.an(p ) Iy, o (k0" )02 do (66)

which can be readily computed from the information concerning the poten-
tial given previously. However, the required integrations can only be
performed numerically and we shall not attempt this here. 1In place of
the Born approximation one of the variational techniques described in
Section 1II could\also be employed, expanding the wave function *ﬂi in

a suitable set of trial functions or otherwise writing it as a function
of a set of variation parameters. In computing the collision cross
section, we must of course exclude the spurious contributions corres-

ponding to purely two-body collisions.
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APPEND IX

PLANE WAVE EXPANSION

We wish to expand the plane wave exp (?E-'.E) in hyperradial and
angular momentum eigenfunctions. This is facilitated by writing the
plane wave as a product of two plane waves in the spaces of E: and of
t2, respectively:

.

Legd 4+ 2eg2) igrteg? im?-g? (A1)

e~'—e(~.- _— = e I

Each of the plane waves in the product is expanded in a series of Bessel
functions and spherical harmonics and the series are then multiplied

term by term

lef%(kercos ¥ cos X)Jzz+%(kp sin x sin ¥)

S IE (2m)3 )} )X (i)z"ﬂe2

‘ - g
£ymy  Lomy, kp(cos x cos y sin x sin )2

A A * v
GOR AN R A CIt (a2)

A
where 7'-t! = kp cos y cos i(%"EI) and 72-£2 = ko sin X sin i(ﬁz-gz).

~n P

Using a well-known therorem for the addition of Bessel functions?®

) J (kp)
= . N A Lytlot2+42+42)
Jz_'_%(kp cos x cos x) Jl_’_}(kp sin y sin ¥ ) _go( 1) "
xcos£‘+% x sin 22+4 X cos£1+* X sin’2? X 2F (=7, Ly+La+0+ 2;8,+3; sin? )

2 = (AL 4841 ) (A48a+8) 12( 8, +254+2242) (A3)
X oF1 (=X, L,48,+242;8,+ #; sin? )( 172 2 172 ,
2P0 (0 burbariZidas 3 X0 D)T [(£70) T2
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we can rewrite Eq. (A2) as

. gy * A A
e11'~§-‘-= (21r)3 Z (i)}\ '(——yz'kg+ 0(}\15152“‘11“2(‘”) %J@xlzmﬂnz(g) (a4)

A £yfomym,

1
after making the replacement A —>§(A-£1—Zz). The same method could have
been used to obtain the plane wave expansion developed in Appendix B of

Paper 1.
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(a)

FIG.1

pAAAAnA
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(b) (c) (d)

RA-451,541-46

THREE-BODY SCATTERING DIAGRAMS. (a) DIAGRAM CORRESPONDING TO THE
FIRST-ORDER TERM IN THE BORN SERIES WHICH CONTAINS THE INTERACTION
V., THIS PSEUDO THREE-BODY PROCESS IS REPRESENTED BY THE
AMPLITUDE GIVEN IN EQ. (37). (b) AND (c) DIAGRAMS CORRESPONDING TO THE
SECOND ORDER TERM IN THE BORN SERIES WHICH CONTAIN V,, V,, AND

V5 V,, RESPECTIVELY. (d) PSEUDO THREE-BODY DIAGRAM CORRESPONDING
TO THE SECOND ORDER TERM IN THE BORN SERIES WHICH CONTAINS V,, V..




